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Abstract—This paper presents the results obtained comparing
the performance of two attitude estimation filters applied on data
measurements from an Inertial Measurement Unit (IMU). The
device used for this work is called iNEMO, which includes a
tri-axis gyroscope, a tri-axis accelerometer and a tri-axis magne-
tometer, as well as a pressure sensor. The first attitude estimation
algorithm is called Tilted Compass, which has been developed
by STMicroelectronics. The second filter is the Madgwick filter,
which is supposed to provide a better performance (mainly in
terms of accuracy) for the attitude estimation. The values of roll,
pitch and yaw angles have been computed by using these two
algorithms and the results compared.
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I. INTRODUCTION

Inertial Measurement Units have become very popular in the
last few years, thanks to their versatility and simplicity. The
purpose of using an Inertial Measurement Unit is to obtain
the attitude angles of roll, pitch and yaw starting from the
measurements of gyroscope, accelerometer and magnetometer.
Several approaches have been used so far in order to achieve
this goal: one of the most used filters is the Extended Kalman
Filter, as well as the algorithm introduced by Julier et al. [9].
Other new approaches have been explored and led to more
accurate results, such as the Mahony [8] and Madgwick [7]
filters. In particular, the latter will be used in this work in
order to test its accuracy when using a general IMU. Its results
will then be compared to the ones obtained when using a
simpler attitude estimation algorithm called Tilted Compass,
developed by STMicroelectronics. This work is mainly focused
on identifying and discussing the main reasons behind the
accuracy of the results obtained when using a specific attitude
estimation algorithm. In particular, the importance of good
measurements from the magnetometer is also emphasized and
investigated. This paper is organized as follows: section II
describes the device used to obtain our results, which is an
IMU called iNEMO and provided by STMicroelectronics;
section III presents some differences between the commercial
version of the IMU and the version used for our research
purposes. Section IV describes the two algorithms used by
also providing some theoretical explanation. Section V shows
and compares the performance and results obtained for the
attitude estimation when using these two algorithms.

II. INERTIAL MEASUREMENT UNIT: INEMO

The Inertial Measurement Unit used in this research project is
called iNEMO and provided by STMicroelectronics. Such de-
vice is based on MEMS (Micro Electro-Mechanical Systems)
and it is made of the following components, as shown in Fig. 2:

Fig. 1: The Inertial Measurement Unit iNEMO

• LPS331AP, a pressure sensor which has not been used
for the purpose of this work

• L3GD20, a three-axis gyroscope in which data is
saved in 16-bit registers and sent to the microprocessor
through SPI communication. The values registered for
speed are in dps (degrees per second). Possible values
are within these ranges: ±250dps, up to ±2000 dps.

• LSM303DHLC, module that has both an accelerom-
eter and magnetometer. For this sensor, I2C is the
communication protocol used. The user can select the
preferred range among the following ones: ±2g, ±4g,
±8g for the accelerometer while ±1.3, ±2.6 and ±8.1
Gauss for the magnetometer.

Programming the iNEMO is not an easy task, since a direct
USB connection is missing. This means that it can be con-
nected only by using single wires to the proper pins in order
to communicate with it. This is the reason why an external
device has been used, called STM32F4 and also provided by
STMicroelectronics [1], since it provides some pins that allow
use of the device as an external programmer.

A. Configuration of sensors

Meaningful data from sensors can be obtained by using
some specific structures defined in C programming language.
An issue that needed to be solved is related to the proper
configuration of the magnetometer. In fact, such device can
be configured to work in three different modes: Continuous,
Single or Sleep mode. Continuous mode is the one that has
to be selected in order to obtain measurements from the



Fig. 2: Internal implementation of the iNEMO

Fig. 3: Configuration of the beta version of iNEMO

sensor continuously. However, the magnetometer was initially
not working as expected and only a single measurement
was detected by the sensor. In particular, such misbehaviour
was related to a bit in the system register of the sensor
which is wrongly set. This issue was solved by changing the
configuration mode of the magnetometer, switching between
Continuous and Sleep mode at every execution step.

B. Differences with the commercial version

The version of iNEMO used in this project is a beta version
of the sensor, and therefore slightly different compared to
the one available on the website of STMicroelectronics, as
shown in Fig. 3. and Fig. 4. In particular, there are some
differences about how to configure the communication with the
accelerometer/magnetometer. In the commercial version, two
pins (PC8 nd PD2) are used for the interrupts received from the
accelerometer and magnetometer, respectively. There is also an
additional connection (LSM DRDY) which is specifically used
for data, after the interrupt has been handled, which is pin PC7.
In the beta version of iNEMO the connection LSM DRDY
is not available, and therefore both interrupt connections
(for accelerometer and magnetometer) are also used for data
transmission. In addition, in the beta version LSM INT1 has a
different pin number, PB5. Such a difference is very important
for the proper configuration of the communication between
microprocessor and sensor, since the pin number has to be
specified when enabling the interrupts.

Fig. 4: Configuration of the commercial version of iNEMO

III. ATTITUDE ESTIMATION ALGORITHMS

In order to compute the attitude estimation, the Kalman filter
[5] has been widely used over the years. However, recent
studies have shown that the Kalman filter is computationally
expensive and therefore simpler filters have been preferred.
On of these is the Madgwick filter, that allowed exploration
of new possibilities about the usage of MARG and IMU
sensors. In particular, these kind of sensors are low power
devices or where frequency update is very high. First, we
need to introduce the Tilt Compass algorithm, provided by
STMicroelectronics, whose results have been compared to the
ones obtained by using the Madgwick filter.

A. The Tilted compass filter

STMicroelectronics provides an algorithm to compute the
attitude estimation of iNEMO by having values from gyro-
scope, accelerometer and magnetometer. The calibration of
magnetometer is very important before computing the atti-
tude estimation. The code provided by STMicroelectronics
already provides a function that is specifically used to cali-
brate the magnetometer. The calibration of magnetometer is
done through noise rejection. There are two different kind of
disturbances: the ones called Hard Iron which is due to the
presence of magnets nearby, and the ones called Soft Iron,
that are caused by electrical fields [6], [2], [4], [3]. In case
of no disturbance, the data plotted from the magnetometer
should be a sphere centered in the origin. However, when
these two kind of noises are affecting data obtained from
magnetometer, the sphere is no longer centered in the origin
and it is also deformed, which means that its more likely an
ellipsoid rather than a sphere. In particular, hard noises are
causing the sphere not to be centered in the origin, while
soft noises are causing its deformation. This means that data
from the magnetometer have to be multiplied by a factor,
called Scale Factor, and subtracted by an offset in order to
reject these two kind of noises. This is the easiest way to
obtain calibration of the magnetometer. In order to get the
offset value, the average value along each axis has to be
computed, by also computing the minimum and maximum
values obtained. At each step, the offset values need to be
updated, by computing the overall average value again. The
attitude estimation computed is actually reliable along pitch
and roll axis, even without the calibration of the magnetometer,
since measurements obtained from accelerometer affect the
estimation obtained along these axes rather than data obtained
from the magnetometer. On the other hand, accelerometer
measurements do not play any role in the estimation of yaw
angle, while magnetometer measurements are fundamental



values to compute the estimation along this angle. This means
that the magnetometer has to be calibrated properly for the
estimation of the yaw angle. The Tilted Compass algorithm
allows to obtain roll, pitch and yaw angles directly. First, this
algorithm normalizes measurements of accelerometer in order
to obtain more precise attitude estimation, and then computes
the values of roll, pitch and yaw angles through the function
atan2.

B. The Madgwick filter

The Madgwick filter is an algorithm that can be used for the
attitude estimation of an Inertial Measurement Unit (IMU),
introduced by Madgwick [7]. The IMU is a device which is
composed of several sensors that are all used to compute the
attitude estimation: three-axis gyro, three-axis accelerometer
and three-axis magnetometer. The Madgwick filter uses a
technique called sensor fusion for data collected form the
above mentioned sensors. In particular, the filter uses the
measurements obtained from accelerometer and megnetometer
as correction elements for the measurement errors for the
direction which is obtained when integrating measurements
from the gyroscope. In addition, the algorithm uses quaternions
that allow to solve singularity issues when representing angles
by using the Euler angles (Euler notation). These are the
advantages in using this filter:

• Computationally less expensive than the Kalman filter

• The filter is efficient and accurate even when sampling
at a low rate, while this is not always guaranteed when
using the Kalman filter

• One or two degrees of freedom when calibrating the
filter

This algorithm also checks that measurements from magne-
tometer are reliable (it checks that they are different from 0),
and when such measurements are null, the attitude estimation
is obtained only by using measurements from gyroscope and
accelerometer. In this algorithm, there are two parameters
that could be changed by the user: the value of beta (which
is set to 0.1 by default) and SampleFreq, which sets the
sampling frequency. The value of β represents all mean zero
gyroscope measurement errors, expressed as the magnitude of
a quaternion derivative. Another aspect to take into account
is related to the sampling rates that have been used for the
sensors, defined as follows:

• Gyroscope: 400 Hz and a cutoff frequency of 20Hz

• Accelerometer: 100 Hz

• Magnetometer: 200 Hz

Data obtained by using this algorithm are much less compared
to the amount of data obtained when using the Tilted Compass,
even though the performance of this algorithm heavily depends
on the values set for parameters β and SampleFreq. In fact,
the best value for beta in our case is 0.001, which allows
the algorithm itself to be less sensitive to the measurement
errors. When using greater values of beta (e.g., 0.1) the attitude
estimation depends on the derivative of the error. About the
value SampleFreq, when using a value around 200 Hz the
attitude estimation is reasonable, even though such value

affects the final estimation is less compared to beta. Since the
values for the gyroscope are in dps (degrees per second) they
have to be converted to radians per second in order to make
them compatible with the Madgwick filter. In the Madgwick
filter, quaternions are computed by using the Gradient Descent
algorithm.

C. Analysis of data from the magnetometer

An important step when computing the attitude estimation is
the calibration of the magnetometer. In fact, such a device
is slightly different compared to the other sensors like the
gyroscope and accelerometer, since the latter ones do not need
any manual calibration. On the other hand, calibrating the mag-
netometer is crucial since there could be several disturbances
that could affect the measurements obtained from this sensor.
Such disturbances can be divided into two categories, called
Soft Iron and Hard Iron disturbances, respectively. These two
kind of noises are due to the presence of additional magnetic
fields that affect the values detected by the magnetometer.
If measurements are not affected by these disturbances, a
sphere centered in the origin of axes will appear when plotting
data collected from the sensor. However, noise shapes this
sphere differently such that an ellipsoid is obtained instead. In
particular, this is how Soft Iron and Hard Iron disturbances are
affecting data obtained from the magnetometer, respectively:

• Soft Iron disturbance causes the shift of the sphere
along the three axes

• Hard Iron disturbance causes the sphere to become
an ellipsoid, since it changes the magnitude of data
collected from the sensor

Calibration allows the correction of data which is subject
to two disturbances mentioned above. In order to correct
measurements, the following transformation has to be applied
on data:

Mr =Mm ·Msf +Moff (1)

where Mm is the measurement obtained from the sensor, while
Msf and Moff are defined as the scale factor and the offset,
respectively. There are several ways to compute the right values
for Msf and Moff . One of these is already implemented by
STMicroelectronics within the Tilted Compass algorithm. It
consists of performing a 360-degree rotation of IMU along
the horizontal plane followed by a 360-degree rotation along
the vertical plane. However, such method is mainly useful
to reduce the Hard Iron disturbance. Generally speaking,
it is always good to perform calibration before using the
IMU for attitude estimation purposes. Some tests are shown
below, that have been performed without the calibration of
the magnetometer, in order to analyze the default settings of
the sensor. In particular, the IMU has been placed onto a
goniometric platform and rotated by 10 degrees each time. This
way, Coriolis acceleration can be neglected when processing
data. The magnetometer has been aligned to the north on order
to perform these measurements.

1) Rotation of 360◦: This test has been performed by
rotating the IMU by 360 degrees on the goniometric platform.
As shown in Fig. 5, data collected from the sensor starts again
from scratch when hitting ±360◦.
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Fig. 5: Heading angle for a rotation of 360 degrees
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Fig. 6: Heading angle for a rotation of ±90◦

2) Rotation of 90◦: This test is composed of two parts.
In the first one, a rotation of ±90◦ was performed, while
in the second part a rotation from 0 to 90◦ was done. The
results obtained from the two tests are shown in Fig. 6 and
Fig. 7, respectively.As shown from the figures mentioned
above, the measurements obtained from the magnetometer are
good enough such that its calibration is not needed. However,
calibration of the magnetometer could also be helpful in order
to reduce noise.

IV. RESULTS

This section analyzes the results obtained from applying the
Tilted Compass and the Madgwick algorithm to data obtained
from the sensors. A first remark is that the attitude estimation
obtained when applying the Tilted compass filter is much more
noisy compared to the one obtained from the Madgwick filter.
In particular, the estimation seems to be more noisy for the
yaw (heading) angle, since data from the magnetometer is
crucial in order to obtain a good estimation for the value of
this angle. The following subsections describe in more detail
how the attitude estimation has been obtained when performing
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Fig. 7: Heading angle for a rotation from 0 to 90◦
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Fig. 8: Roll angle for a rotation of ±90◦
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Fig. 9: Estimation of all the angles by using the Madgwick
filter

rotations around a single angle only. In fact, this kind of test is
very reliable in order to check the accuracy and performance
of the attitude filter used.

A. Rotation around the x axis

In this test, a rotation of -90◦ around the x axis has been
performed. As it can be noticed from Fig. 8, the Madgwick
filter provides good estimation results for all the angles. In
addition, the Madgwick filter provides more accurate results
especially related to the estimation of the Yaw angle φ, as
shown in Fig. 9. Such improvement happens exactly when
the rotation around the x axis happens, which means that the
Madgwick filter is more robust to reject drift errors.

B. Rotation around the y axis

This test has been performed by rotating the IMU of 90◦ first
and -90◦ afterwards around the y axis. Good results have been
achieved for both filters in this case, as shown in Fig. 10.
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Fig. 10: Pitch angle for a rotation of ±90◦
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Fig. 11: Yaw angle for a rotation of -50◦

C. Rotation around the z axis

This test has been performed by rotating the IMU around
the z axis by -50◦. In this case, the estimation performed
by the Tilted Compass algorithm has an offset which is not
present for the Madgwick filter, as shown in Fig. 11. In
particular, the Madgwick filter can achieve good accuracy for
attitude estimation even without calibration. This is because
the algorithm automatically computes the lack of accuracy for
data from magnetometer, as already explained before.

V. CONCLUSION

We have described and analyzed some algorithms in order to
compute the attitude estimation of a low-cost Inertial Mea-
surement Unit called iNEMO. In particular, this work proved
that the performance and accuracy of these algorithms depend
heavily on the quality of measurement data collected from
the sensors. The main issue related to the Tilted Compass
algorithm is how the attitude angles are computed numerically,
since this introduces additional errors for the attitude estima-
tion. On the other hand, the Madgwick algorithm has some
enhancements since it performs additional computations in
order to be robust against lack of accurate data from sensors. In
addition, the Madgwick filter is computationally less expensive
than other filters commonly used for attitude estimation and
therefore also suitable to be executed online.
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