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Abstract—With the development of the GPU, parallel lan-
guages are widely used for developing modern parallel applica-
tions. Given its low energy cost and programmable hardware,
the FPGA emerges as a promising candidate to run GPU
applications. Therefore, executing applications described in GPU
programming languages on FPGA can offer new opportunities
in terms of performance and energy efficiency. However, the gap
between GPU programming languages and hardware description
languages (HDL) poses a significant challenge for this transition.
To overcome this problem, existing works have attempted to
bridge this gap through high-level synthesis (HLS) or soft GPU.
In this paper, we examine how HLS and soft GPU compile GPU
languages for FPGA by discussing the detailed compilation and
execution flow of two representative works: Intel FPGA SDK
for OpenCL and Vortex. This paper also evaluates the coverage
of both approaches and discusses methods for addressing the
challenges each approach faces. Consequently, this paper explores
the challenges HLS and GPU encounter, aiming to identify new
problems and opportunities each approach introduces.

I. INTRODUCTION

The importance of running GPU applications efficiently has
been increasing. With their low energy cost and programmable
hardware, FPGAs are promising candidates for running GPU
applications. However, FPGAs are traditionally programmed
with hardware description languages (HDL), which require
hardware expertise to synthesize and execute the desired
applications. To improve the programmability of running GPU
applications on FPGAs, several efforts have been made to
raise the abstraction level. The first approach involves using
high-level synthesis (HLS). HLS allows users to synthesize
digital circuits by writing in software programming languages
(e.g., C++). Major FPGA manufacturers support OpenCL as
an input to their HLS pipeline. Another method to execute
GPU programs on FPGAs without modifying the source code
involves employing a GPU implemented as a softcore proces-
sor (soft GPU). This approach differs from HLS, which targets
the implementation of specific OpenCL kernels. Instead, a soft
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Fig. 1. Running a GPU application on an FPGA using HLS and soft GPU

GPU uses an FPGA as a substrate to implement the GPU
architecture. Unlike HLS, a soft GPU runs a GPU application
binary on a GPGPU, allowing for a more flexible flow of
execution.

The overview of the two different compilation and execution
pipelines is shown in Figure 1. The first approach involves
an HLS compiler that compiles OpenCL kernels into Verilog
HDL for synthesis. The second approach, the soft GPU, begins
with synthesizing the soft GPU bitstream using an HDL
compiler. Next, the GPU application source code is compiled
into a binary using a soft GPU compiler to be executed on the
FPGA. Using HLS to synthesize the kernel code, or utilizing
a soft GPU, are two approaches that require less hardware
expertise from users. Neither method requires modification
of the original GPU-friendly source code. However, each
approach exhibits different strengths in terms of coverage and
performance, as well as different challenges to overcome for
complete support. In this work, we characterize the distinct
characteristics of using HLS (Intel FPGA SDK for OpenCL)
and a soft GPU (Vortex [1], [2], [3]) for running the parallel
language (OpenCL), and the challenges of each approach for
fluent support.

A. Motivation

Although several studies have explored various methods of
executing GPU code on FPGAs [4], [5], [6], [7], [8], few
have directly compared the characteristics and challenges of
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Fig. 2. General compilation flow for executing OpenCL program on FPGA

soft GPU implementations versus the HLS approach. Par-
ticularly, when it comes to supporting the diverse features
of parallel programming languages, each method introduces
unique hardware and software challenges that are not widely
documented. For instance, implementing a software stack for a
soft GPU entails significant effort to support parallel language
features, such as atomic instructions, due to the multi-layered
complexity of the software stack for soft GPUs. By comparing
the current state and challenges of these two approaches
using identical source code, we aim to provide a deeper
understanding and facilitate broader support and advancement
in this area.

In this paper, we compare HLS versus a soft GPU for
executing GPU applications. Given that the performance of
both platforms heavily relies on the quality of HLS compiler
optimizations and the GPU softcore, this paper primarily
concentrates on examining their coverage and challenges.

This paper makes the following key contributions:

o We compare the execution of GPU applications on FP-
GAs between soft GPU and HLS approaches in terms of
coverage and performance.

o We identify and discuss the challenges of supporting a
wide range of applications on an FPGA using both HLS
and soft GPU approaches.

II. BACKGROUND
A. Running OpenCL on FPGA

To execute OpenCL applications on FPGAs, existing
works [6], [9], [10], [11], [7], [4], [S], [12] often adopt
two approaches: high-level synthesis (HLS) or soft graphics
processing units (soft GPUs). High-level synthesis converts
from an abstract behavioral specification of a digital system
to a register-transfer level (RTL) structure that implements that
behavior [13]. Existing works utilizing HLS [6], [9], [10], [11],
[7] start from OpenCL code and generate hardware description
language (HDL) code, such as Verilog. A soft GPU is a GPU-
like parallel processor on an FPGA, offering FPGA compute
power in a very flexible, GPU-like tool flow [5]. Previous
soft GPU works [4], [5], [12] employ OpenCL as a front-end
language and support the compiler process to generate binaries
consisting of their own instruction set architecture (ISA).

Both approaches use host and kernel compilers to generate
program binaries for deploying programs on FPGAs, as shown
in Figure 2. First, OpenCL host codes are compiled into a
host executable by linking OpenCL communication functions,
such as kernel launch and memory copy operations. Second,
OpenCL kernel codes undergo a two-step compilation process
to be transformed into kernel binaries. In the first step, the
kernel compiler employs the OpenCL Kernel Library to lower
OpenCL kernel functions to access kernel information and
manage program flow. Subsequently, the back-end compiler
generates an FPGA bitstream with a predefined compute unit
(HLS) or produces a kernel executable compatible with the
soft GPU ISA.

During the compilation process, the most crucial consider-
ation is the effective deployment of the programmer’s parallel
tasks onto the FPGA while achieving low latency and energy
efficiency. Although both the HLS compiler and the soft
GPU compiler transform code into binaries through a similar
high-level process, they diverge in their approaches during
the kernel transformation phase. The HLS compiler primarily
focuses on pipelining and pipeline duplication, whereas the
soft GPU compiler emphasizes work distribution and ISA
generation. An example of a widely accepted HLS compiler
is the Intel FPGA SDK for OpenCL, which includes the
AOC compiler [14]. This compiler supports the compilation
of OpenCL source code, abstracting hardware details through
HLS and synthesizing the corresponding FPGA bitstream.
Vortex [1], [2], [3] represents another significant soft GPU
work that supports OpenCL. This paper analyzes the coverage
and challenges presented by HLS and soft GPU through these
two representative examples.
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Fig. 3. Intel HLS for OpenCL compilation pipeline

B. Intel FPGA SDK for OpenCL

The Intel FPGA SDK for OpenCL [14] offers a highly
abstracted programming model, sparing users the need to
delve into hardware specifics. The key components of the
compilation pipeline are encapsulated within the SDK’s AOC
compiler. Figure 3 illustrates the Intel FPGA SDK’s com-
pilation pipeline. Initially, the AOC (kernel) compiler trans-
forms kernel source code into LLVM IR, which is then
subjected to LLVM optimization passes. Subsequently, this



intermediate representation is converted to RTL (Verilog),
leading to hardware mapping and the placement/routing pro-
cess that generates the final FPGA bitstream. The compilation
of host code does not diverge from the standard OpenCL
code compilation process (using GCC/Clang). However, at
runtime, the linked Intel FPGA OpenCL library (installed
with the board support package) enables OpenCL host calls
to be directed to the board. Contrary to the soft GPU ap-
proach or conventional GPU execution, the AOC compiler
facilitates parallelism by creating pipeline stages at any given
moment [15]. To optimize the pipeline window, Intel advises
that the device kernel operate as a single work item with a
size of (1,1,1). Under this configuration, the AOC compiler
seeks to implement pipelined parallelism on loops in kernel
functions. Nevertheless, users may still execute multi-work
item kernels. In such instances, kernels are executed using
an N-Dimensional Range (NDRange)-based approach, where
a deeply pipelined kernel representation allows for concurrent
execution of multiple work items, thereby achieving pipeline
parallelism. In this paper, we adopt the NDRange iterative
work item issue approach to avoid modifying the GPU-friendly
kernel code.

C. Vortex: Open-source RISC-V GPGPU

Vortex [1], [2], [3] is an open-source RISC-V GPU that
supports single-instruction, multiple-threads (SIMT) execution
through extensions to the RISC-V ISA. Figure 4 shows the
microarchitecture of Vortex. Vortex has been synthesized and
run on FPGAs configured with up to 64 cores with a peak
clock of over 200 MHz. Included with Vortex is an extensive
software stack that supports OpenCL. The six-stage pipeline
design is extensible and highly configurable, making Vortex a
fitting research platform for design space exploration versus
other methods of computing via FPGA.
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Fig. 4. Vortex microarchitecture [1], [2], [3]

D. Vortex Software Stack for OpenCL

Figure 5 shows an overview of the Vortex software stack
for OpenCL. To support OpenCL language, Vortex em-
ploys the Portable Computing Language (PoCL) [16] project,
which implements extendable compiler and runtime support
for OpenCL. Within the Vortex software stack, the Kernel
Compiler and the OpenCL Runtime Library, as depicted in
Figure 2, are substituted with the PoCL compiler and PoCL
runtime, respectively. Vortex is able to use GCC and Clang as
host compilers with PoCL runtime.
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Fig. 5. Vortex Software Stack for OpenCL

The blue box in Figure 5 illustrates the extension to support
Vortex. First, the PoOCL compiler has to be extended to generate
Vortex kernel binaries with the LLVM compiler [17]. The
PoCL compiler is extended to add a pass that generates a
kernel with work scheduling that reflects Vortex hardware.
Then, LLVM is used to generate the kernel binary, which is
compliant with the Vortex ISA. Second, the PoCL runtime is
also extended using the Vortex runtime functions, including a
communication interface with Vortex hardware. By extending
the PoCL project, the Vortex software stack can support
running the OpenCL program on Vortex.

Vortex uses a modified version of LLVM for the RISC-
V compiler to support the extended ISA. The Vortex ISA
extension is specifically designed to manage divergence within
a warp through the introduction of four new instructions [1],
[2], [3]. Vortex introduces the SPLIT instruction to indicate
the divergent branch and the JOIN instruction to indicate the
reconvergence point; the PRED instruction indicates the loop
exit and prevents termination on the last iteration of the loop,
and the TMC instruction changes the active threads. To use
binaries that leverage this ISA supported by Vortex hardware,
we need to modify the LLVM compiler to accommodate the
Vortex ISA with divergence analysis, device kernel translation,
and device code generation. Figure 5 illustrates the extended
LLVM compilation flow to support Vortex.

III. EVALUATION

In this section, we compare the two aforementioned ap-
proaches to run GPU applications on FPGAs with respect
to benchmark coverage and performance. As mentioned in
previous sections, both Vortex and the Intel FPGA SDK
utilized identical source code (both host and kernel), differing
only in the kernel binaries loaded for all benchmarks. For
our experiments, we selected two models from Intel’s Stratix
10 FPGA family [14]: the SX2800 and the MX2100. The
most notable difference between these two boards is that
the MX2100 is equipped with HBM2 memory, whereas the
SX2800 relies solely on DDR4 off-chip memory. Among the
two boards, the Intel FPGA SDK approach was synthesized



TABLE I
BENCHMARK COVERAGE TABLE (LEFT: VORTEX, RIGHT:INTEL HLS)

Benchmark Name Vortex | Intel SDK Reason to Fail
Vecadd
Sgemm

Psort
Saxpy
Sfilter

Dotproduct
SPMV

Cutcp
Stencil

Lbm

OCLPrintf

Blackscholes

Matmul
Transpose
Kmeans
Nearn
Gaussian
BFS
Backprop

Streamcluster

pathfinder
nw
B+tree
LavaMD
Hybridsort

Particlefilter
Dwd2d

LUD

Not enough BRAM

Not enough BRAM

Not enough BRAM

Atomics

Not enough BRAM
Not enough BRAM
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on the MX2100, and Vortex was synthesized on the SX2800.
Although these two boards may yield slightly different per-
formance results due to their differing off-chip memory con-
figurations, coverage and challenges are the primary focus
of this paper. Therefore, we believe that comparing the two
approaches will provide insightful observations.

A. Coverage Comparison: By Benchmark

To compare the benchmark coverage of the Intel SDK for
OpenCL and Vortex, we tested 28 benchmarks from the Ro-
dinia benchmark suite [18] and NVIDIA OpenCL SDK Code
Samples [19]. Table I presents the overall results of benchmark
coverage, indicating that six benchmarks failed to synthesize
with the Intel SDK, in contrast to Vortex, which supported
every benchmark. Vortex demonstrated broader benchmark
coverage compared to the Intel SDK because soft GPUs are
designed to utilize ISA and execute binaries on solid hardware.

In the hybridsort benchmark, the histogram kernel function
includes an integer atomic add operation. Although the Intel
SDK supports 32-bit integer atomic functions, it was unable
to synthesize the kernel source code due to the heterogeneous
memory system of the target FPGA, leading to synthesis fail-
ures. For other benchmarks experiencing synthesis errors, their
area reports indicated that the required hardware resources
exceeded limits, particularly in terms of BRAM blocks. A key
reason for this is that each array access in the kernel code was
synthesized into 32 load units. To mitigate hardware resource
constraints, modifications can be made either to the type of
Load Store Unit (LSU) or by enhancing data reuse at the

source code level. The case study presented in Section III-B
provides detailed methods to address these issues.

B. Case Study: Increasing the Coverage of HLS

In HLS, one prevalent challenge encountered by users when
compiling GPU-optimized OpenCL source code for FPGA
deployment relates to the constrained hardware resources
of FPGAs, particularly block RAM (BRAM). For instance,
applications such as Ibm and backprop, as illustrated in Table I,
encounter synthesis obstacles due to insufficient BRAM, with
error messages indicating the inability to synthesize the device
source code because of inadequate BRAM resources. This
issue is accentuated by the increasing complexity of mod-
ern applications undergoing FPGA adaptation. Specifically,
the backprop application initially demanded 12,898 BRAM
blocks, which exceeds the available BRAM capacity of the
Stratix 10 FPGA by 188%. In this section, we aim to elucidate
basic area optimization strategies to assist users in efficiently
compiling their source code with HLS. It is important to note,
however, that the application of these optimization techniques
may impact overall performance due to the necessitated tem-
poral reallocation of the limited hardware resources.

TABLE 11
BACKPROP SYNTHESIS AREA REPORT USING INTEL HLS
Optimization step ALUTSs FFs BRAMs | DSPs
Original code 1,000,388 | 2,158,459 12,898 17
Variable reuse (O1) 826,993 1,587,827 9,882 9
Pipelined load (O2) 451,395 1,051,467 5,694 11

1) O1: Variable Reuse: In Figure 6, we present three
code listings from the kernel function bpnn. Listing 1
shows the original device code, while Listing 2 and List-
ing 3 demonstrate the effects of applying two cumulative
optimization techniques. Upon reviewing the original device
source code, we identified that certain calculated values, such
as delta[index_x] = ETA, were redundantly computed
multiple times within the kernel function. To mitigate un-
necessary computations and memory loads, additional local
variables were introduced, enabling these values to be loaded
once and reused throughout the function (Lines 7-9 in List-
ing 2). This optimization significantly reduced the number of
block RAMs (BRAMs) utilized, from 12,898 (188%) to 9,882
(144%), as detailed in Table II.

2) O2: Load Unit Pipelining: Despite the substantial re-
duction in BRAM usage achieved through variable reuse,
an additional reduction was necessary to accommodate all
required hardware resources within the FPGA board. The
synthesis report from O1 revealed that each line in lines 7-
9 of Listing 2 involved 32 operating load units for array data
retrieval, consuming over 1,000 BRAM blocks per line. To
decrease the count of LSUs, ___pipelined_load directives
(Lines 7-9 in Listing 3) were implemented on the load
operations. This pipelining strategy, recommended by Intel
for its area efficiency at the expense of performance in non-
consecutive access patterns, further reduced the BRAM count
from 9,882 (144%) to 5,664 (83%).



__kernel void bpnn(...){

int index = ( int index = (

hid + 1 ) » HEIGHT =« 3
gid.y + ( hid + 1 ) * lid.y + gid.y + (
lid.x + 1 + ( hid + 1) ; lid.x + 1 +

int index_y = HEIGHT % gid.y + lid.y 4
+ 1;

int index_x =

+ 1;

lid.x + 1; 5 int index_x =

wl[index] += ((ETA x delta[index_x] * 7 float delta_value
ly[index_y]) + (MOMENTUM =* ETA;
oldw([index])); 8 float ly_value =

oldw([index] = ((ETA x delta[index_x] 9 float oldw_value

__kernel void bpnn(...){

hid
hid

int index_y = HEIGHT % gid.y + lid.y 4
lid.x + 1; 5
= delta[index x] =* 7

ly[index_y]; 8

__kernel void bpnn(...){

int index = (

+ 1 ) % HEIGHT «* 3 hid + 1 ) % HEIGHT «
+ 1) %= lid.y + gid.y + ( hid + 1 ) * lid.y +
(hid + 1) ; lid.x + 1 + ( hid + 1) ;

int index_y = HEIGHT % gid.y + lid.y
+ 1;

int index_x = lid.x + 1;

float delta_value = __ pipelined_load
(delta + index_x) »* ETA;

float ly_value = __ pipelined_ load(ly

oldw[index] =* +index_y);

* ly[index_y]) + (MOMENTUM = MOMENTUM; 9 float oldw_value = __ pipelined_load(
oldw[index])); 10 oldw + index) *» MOMENTUM;
11 float delta_by_ly = delta_value x 10
ly_value + oldw_value; 11 float delta_by_ly = delta_value =
12 w[index] += delta_by_ly; ly_value + oldw_value;
13 oldw([index] = delta_by_ly; 12 w[index] += delta_by_ly;
14 13 oldw([index] = delta_by_1ly;
.} 15 c.. ) 14 c.. )
Listing 1. Original device code Listing 2. Ol. Variable reuse Listing 3. O2. Pipelined load
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Fig. 7. Cycle comparison for different warp and thread sizes with two
benchmarks, Vector Addition and Transpose, on the Vortex simulator with
four cores. The cycle is normalized to the minimum cycle result. The light
color has a lower cycle compared to the dark color.

C. Case Study: Performance Optimization of Vortex

In this case study, we demonstrate the performance impact
of varying hardware configurations on Vortex. This analysis
provides insights into how tuning hardware configurations,
such as the number of warps or threads, is crucial for enhanc-
ing Vortex’s performance. Increasing the number of threads
necessitates an expansion in the register file size, as well as
the number of arithmetic logic unit (ALU) lanes and floating-
point unit (FPU) lanes. Additionally, augmenting the number
of warp sizes leads to an expansion in the warp informa-
tion table size. It is important to note that the application’s
latency does not invariably decrease with an increase in the
number of warps and threads. This is because the application
can encounter other bottlenecks, such as memory bandwidth
limitations or pipeline unit stalls.

Figure 7 illustrates the performance variations of two bench-
marks, vector addition and transpose, with different thread and
warp sizes. These benchmarks differ in their memory access
patterns, the number of loads per kernel, and the computation
instructions count. The vector addition benchmark involves

Back propagation benchmark kernel codes with cumulative optimizations

loading two floating-point values from two arrays indexed by
the thread ID, adding these values, and then updating a third
array also indexed by the thread ID. In contrast, the transpose
benchmark works with a two-dimensional array, swapping
values at opposite locations. This evaluation was conducted
using the Vortex simulator with four cores.

The benchmarks not only reach their optimal performance at
different warps and thread sizes but also exhibit varied overall
cycle distributions. For vector addition, the best performance
is observed with four threads and four warps. In contrast,
transpose achieves optimal performance with eight threads
and eight warps. This disparity arises because vector addition,
which involves more loads, incurs more LSU stalls with
a higher number of threads and warps per core. If vector
addition is configured with eight warps and eight threads, its
performance could decrease by 27%. Similarly, if transpose is
configured with four threads and four warps, its performance
could decrease by 44%. The suboptimal configuration for
both benchmarks—eight warps and four threads—results in
performance reductions of 11% and 17%, respectively. This
underscores the necessity of testing multiple hardware con-
figurations to identify the optimal setup for each benchmark,
highlighting the importance of targeted optimization.

D. FPGA Usage

In this section, we compare the synthesized area reports for
both the HLS and the soft GPU approaches. Each instance in
the Intel SDK approach was synthesized for every benchmark,
in contrast to Vortex, which had multiple synthesis instances
with different hardware configurations that could be applied
across all benchmarks. Table III presents the area reports from
the synthesized kernel source code for selected benchmarks
using HLS. Although the number of BRAMs was the common
bottleneck in the AOC compiler approach, all types of hard-
ware resources reflected the complexity of the benchmarks,
ranging from relatively simple benchmarks (such as Vecadd
and Matmul) to more complex ones (Gauss and BFS), with




the exception of DSP units, which showed relatively low usage
across benchmarks.

TABLE III
SYNTHESIS AREA REPORT USING INTEL HLS
Benchmark name ALUTSs FFs BRAMSs | DSPs
Vecadd 83,792 263,632 1,065 1
Matmul 250,218 415,893 2,696 5
Gauss 537,571 1,174,446 6,384 10
BFS 256,690 | 1,172,664 5,892 6
TABLE IV
SYNTHESIS AREA REPORT FROM VORTEX
C| W T ALUTSs FFs BRAMs | DSPs
2 4 16 332,143 | 459,349 1,275 896
2 8 16 336,568 | 459,353 1,299 896
2 16 | 16 341,134 | 478,735 1,299 896
4 8 16 617,748 | 793,976 2,235 1,792
4 16 | 16 626,688 | 827,757 2,235 1,792

Similar to Table III, Table IV displays the synthesis area
results for various hardware configurations from Vortex. Three
indices (C, W, T) represent the number of cores, the number
of warps per core, and the number of threads per warp,
respectively. As expected, a greater number of cores, warps,
and threads translate to increased hardware resource usage
in FPGA synthesis. However, larger Vortex configurations
do not always guarantee better performance across different
benchmarks, as discussed in Section III-C.

When comparing Table III with Table IV, the soft GPU
approach exhibited a broader range of hardware usage, pro-
viding users with more options to configure their FPGA
within their area constraints without the need for source code
optimizations. However, for simpler applications like vecadd,
the HLS approach demonstrated more area-efficient synthesis
results compared to soft GPU.

IV. DISCUSSION

In this section, we discuss the challenges of running GPU
applications on FPGAs using both HLS and soft GPU ap-
proaches. We explored two approaches attempting to bridge
the gap between GPU applications and FPGA execution.
However, as illustrated in Section III, both methods face
challenges, including the need for kernel code modification in
HLS due to inadequate BRAM, and the necessity for perfor-
mance optimization in Vortex through hardware configuration
exploration. Therefore, we discuss the challenges presented
by these two approaches and explore potential solutions to
address them.

A. Challenges of Supporting OpenCL in Vortex

The primary challenge for Vortex is identifying the best con-
figuration for a given workload, which is essential to achieve
optimal performance. As demonstrated in Section III-C, the
performance of applications depends significantly on both
the hardware configuration and the applications’ characteris-
tics. However, testing all the hardware combinations in the

hardware needs resynthesizing and effort. Thanks to its own
simulator, Simx, Vortex can expedite the exploration of various
hardware configurations. Simx is a C++ cycle-level simulator
that achieves cycle accuracy within 6% compared to the
Verilog model and helps rapidly explore various hardware
configurations [3]. Therefore, a valuable opportunity exists
for research aimed at minimizing or circumventing the ex-
ploration space by leveraging the application’s characteristics
and proposing an analytical model for Vortex’s performance.

The second challenge involves both hardware and software
modifications to introduce new features within the complex,
multi-layered Vortex software stack. First, introducing new
features requires hardware updates, such as adding support
for barriers and atomic intrinsics. Second, supporting software
features in the front-end language requires modifying the com-
piler’s lowering process, accompanied by a range of design
considerations. For instance, atomic functions in OpenCL need
to be processed through the front-end, middle-end, and back-
end of the compiler via an intermediate representation (IR) at
each stage. The compiler can implement atomic functions in
multiple ways, such as using atomic instructions or a com-
bination of branch and load/store operations, and a decision
is required on how to integrate these atomics—via IR, Vortex
kernel function calls, or built-in libraries—into the lowering
process. Thirdly, adding a new feature may necessitate updates
in the host runtime library, such as incorporating a communi-
cation function for new GPU kernel capabilities like printing.
A thorough abstraction and evaluation of the software stack
simplifies maintenance and improves extensibility.

Additional challenges are not extensively addressed in this
paper, including efficient divergence control and the effec-
tive distribution of work items to hardware parallel units.
One of the strengths of Vortex is its hardware-supported
divergence control logic, exposing SPLIT, JOIN, and PRED
instructions [1], [2], which enables supporting benchmarks
with complex control flows. However, these operations require
additional computation cycles, indicating that compiler opti-
mizations, such as uniform statement analysis or duplicating
parts of the control flow, could further enhance performance.
Another significant challenge involves the efficient mapping
of work items and groups onto the Vortex hardware architec-
ture, particularly in barrier support. Since mapping influences
memory access patterns and pipeline unit stalls, devising adap-
tive mapping strategies based on application characteristics
emerges as an area for research.

Vortex Challenges @ Identifying the optimal hardware
configuration for applications. ® Simplifying the inte-
gration of new hardware and software capabilities into
the Vortex ecosystem. ® Enhancing performance via
compiler optimization to control divergence effectively. @
Identifying the optimal work item distribution on Vortex
hardware.




B. Challenges of Supporting OpenCL in HLS

One of the most important challenges HLS encounters is
the difference in focus between HLS technology and GPU
languages. HLS focuses on pipeline parallelism, while GPU
languages are designed to express data-level parallelism. Ac-
cording to an Intel white paper [15], the Intel SDK recom-
mends using a single work item and presents optimizations
such as loop speculation and loop fusion for loops within a
single work item. Although the Intel SDK supports multiple
work items to bridge the gap between different types of
parallelism, the maximum number of concurrent work items
must be statically determined at compile time. Additionally,
the bitstream generated by HLS does not contain a mechanism
to distribute large work items into smaller parallel units, which
can necessitate resynthesis. Furthermore, the characteristics
demonstrated by the Intel SDK indicate that the potential
advantages of GPU language abstractions are not fully ex-
ploited. It is believed that employing compiler techniques, such
as mapping software-defined parallel units to hardware with
limited parallelism (e.g., flat collapsing [16], [20]), can bridge
this gap more effectively.

The second significant challenge in HLS is its poor pro-
grammability, necessitating an in-depth understanding of both
HLS optimization techniques and FPGA architecture. This
issue is evident in Section III-B, where a BRAM-intensive
synthesis process renders FPGA execution impractical without
modifications to the loading process. Given that the HLS
compiler makes extensive use of pragmas, employing these
pragmas demands a greater level of knowledge than is typi-
cally required for conventional GPU programming. Moreover,
with certain GPU features being either unsupported or not
recommended, programmers are compelled to identify alter-
native strategies. For instance, if a programmer employs a
kernel function with barriers [15], the code must be adapted
to utilize a single work item due to the lack of support
for barriers. This challenge underscores the need for further
compiler optimizations to enhance automation and feature
support.

The final challenge with HLS is its tendency to prolong
the development process since even small changes to a kernel
require resynthesizing the entire bitstream. For example, the
backpropagation benchmark mentioned in Section III-B took
up to 10.4 hours for a successful synthesis, with unsuccessful
attempts taking 1.5 and 1.2 hours. Repeating this process
multiple times, especially alongside the second challenge,
significantly slows development.

HLS Challenges @ Narrowing the gap between the
parallelism approaches of HLS technology and GPU lan-
guages focused on pipeline and data parallelism, respec-
tively. @ Improving poor programmability that requires
a deep understanding of HLS optimizations and FPGA
architecture. ® Streamlining lengthy development process
coming from re-synthesizing kernel.

V. RELATED WORK
A. FPGA vs GPU

Cong et al. compare FPGAs and GPUs using the Rodinia
benchmark and Xilinx Virtex 7 FPGA versus NVIDIA K40c
GPU [6], showing that FPGAs have 28% lower power use and
lower runtime in six out of 15 kernels, despite lower clock
speed and limited parallelism.

The work from Ejjeh et al. on the Intel FPGA SDK for
OpenCL’s impact on image processing in the ISP pipeline
highlights the pros and cons of using high-level synthesis
(HLS) tools [9]. This demonstrates that compiler optimizations
can boost performance but require significant programmer
effort. The study also points out the limitations of the HLS
toolchain, including the need for extensive tuning and manual
implementation of optimizations not automatically handled by
the compiler.

Ahangari et al. developed a framework in SystemC, de-
viating from the prevalent use of OpenCL in Intel FPGA
development [10]. This shift addresses a major issue with
OpenCL: Its abstraction simplifies programmability versus
HDLs but often reduces hardware design efficiency, espe-
cially in memory bandwidth usage. Their framework combines
cycle-accurate implementation with high programmability and
introduces a reusable template that eases the design process for
non-hardware experts. Currently, its use is limited to graph-
processing algorithms, facing challenges with larger graphs
and lacking support for edge weighting.

Jin et al. [11] explore resource and peak memory bandwidth
usage on FPGA implementations using the Intel SDK for
vector addition on the Nallatech 3856A board. Their work
compares compute unit duplication, with separate memory
access, against SIMD vectorization, which duplicates only the
data path.

Zohouri et al. investigate the Intel SDK’s optimization on
Stratix V FPGA, focusing on power and Rodinia benchmarks
performance [7]. They discovered that applying FPGA-specific
optimizations was more effective than directly porting GPU-
optimized code to the FPGA. Their study shows FPGAs can
outperform GPUs in efficiency by up to 3.2x and also exceed
CPUs in performance and energy efficiency, offering greater
adaptability. However, they note challenges such as the steep
learning curve of hardware programming and the necessity for
understanding low-level programming paradigms.

B. Soft GPU

The DO-GPU framework [4] streamlines soft GPU devel-
opment by offering automation and customization tools for
building application-specific soft GPUs with “macro units”.
It automates soft GPU hardware generation by integrating
these macro units into a flexible architecture, streamlining
FPGA programming. Building on the PDL-FGPU, DO-GPU
introduces standard interfaces for macro units and architectural
enhancements, including scoreboarding for improved memory
latency management and a VLIW scheduling approach for



simultaneous scalar and macro instruction execution, surpass-
ing the previous single instruction per cycle limitation. Its
performance was assessed using the Intel Stratix 10 (S10).

Duarte et al. developed FGPU [5], a 32-bit, multi-core,
FPGA-based processor optimized for the OpenCL SIMT
model, featuring area and energy efficiency with a 2.9x higher
compute density and 11.2x lower energy use than MicroBlaze,
and 4x faster than Cortex-A9 with NEON. Managed via a
Python API, FGPU offers significant benefits but encounters
scalability issues on smaller FPGAs due to high area demands,
memory and speed limitations for intensive tasks, and the
intricacies of FPGA-specific programming and timing man-
agement. These challenges are exacerbated by FPGA resource
constraints and limited parallelism.

SCRATCH [12], building on the MIAOW [21] implementa-
tion, expands its instruction set from 42 to 156 and introduces
features like a separate clock domain and prefetch system
to reduce data latency. It includes a compile-time tool to
customize the GPGPU architecture to specific applications
and optimize resource use and execution precision. This tool
streamlines the OpenCL compilation, design adjustment, and
execution process on Xilinx FPGAs, increasing computa-
tional capacity by supporting more compute units and cores.
SCRATCH facilitates native OpenCL code use on FPGAs,
allows for architecture customization, and supports advanced
image classification algorithms like CNNs, demonstrating its
utility in high-level computing tasks.

VI. CONCLUSION

In this paper, we presented a study comparing two ap-
proaches—HLS and soft GPU—that attempts to bridge the gap
between parallel programming languages and the execution
of GPU applications on FPGA devices. Our analysis of each
approach’s compilation and execution pipelines uncovered
inherent challenges. Specifically, the HLS exhibited poor pro-
grammability, especially when running complex applications,
often requiring kernel code modifications for FPGA compati-
bility. On the other hand, the optimal hardware configuration
in the soft GPU was found to be application-dependent. This
underscores the need for a more sophisticated approach, such
as an analytical model, to identify the optimal soft GPU
configuration for a more intuitive user experience.
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